









# ECO series description



Fig. 1

The ECO SYSTEM units are linear actuators made of a self-supporting extruded aluminum frame and are driven by a polyurethane belt with AT metric profile steel inserts.

- Three different sizes available: 60mm, 80mm, 100mm
- Version available with recirculating ball bearing or roller rails
- Reduced weight ensured by the light frame and the aluminum sliders
- High sliding speed

The ECO SYSTEM series actuators are offered with two motion systems:

#### ECO SYSTEM - SP

Featuring a maintenance free recirculating linear guide rail fitted inside the profile.

#### ECO SYSTEM - CI

Featuring four rollers with a Gothic arch outer profile sliding on hardened steel bars placed inside the profile.



# The components

#### **Extruded bodies**

The anodized aluminum extrusion used for the profile of the Rollon ECO series linear units was designed and manufactured by industry experts to optimise weight while maintaining mechanical strength. The anodized aluminum alloy 6060 used (see physical-chemical characteristics below) was extruded with dimensional tolerances complant with EN 755-9 standards.

#### **Driving belt**

The Rollon ECO series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved.

Optimisation of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

The driving belt is guided by specific slots in the aluminum extruded body thus covering the inside components.

#### Carriage

The carriage of the Rollon ECO series linear units is made of anodized aluminum. Two different length carriages are available for each type of linear unit.

#### General data about aluminum used: AL 6060

#### Chemical composition [%]

| Al        | Mg        | Si        | Fe   | Mn   | Zn   | Cu   | Impurites |
|-----------|-----------|-----------|------|------|------|------|-----------|
| Remainder | 0.35-0.60 | 0.30-0.60 | 0.30 | 0.10 | 0.10 | 0.10 | 0.05-0.15 |

Tab. 1

#### Physical characteristics

| Density         | Coeff. of elasticity | Coeff. of thermal expansion<br>(20°-100°C) | Thermal conductivity<br>(20°C) | Specific heat<br>(0°-100°C) | Resistivity                     | Melting point |
|-----------------|----------------------|--------------------------------------------|--------------------------------|-----------------------------|---------------------------------|---------------|
| kg              | kN                   | 10 <sup>-6</sup>                           |                                | J                           | $\Omega$ . m . 10 <sup>-9</sup> | °C            |
| dm <sup>3</sup> | mm <sup>2</sup>      | K                                          | m . K                          | kg . K                      |                                 |               |
| 2.70            | 69                   | 23                                         | 200                            | 880-900                     | 33                              | 600-655       |

Tab. 2

#### Mechanical characteristics

| Rm       | Rp (02)       | А  | НВ    |
|----------|---------------|----|-------|
| N<br>mm² | N<br>—<br>mm² | %  | _     |
| 205      | 165           | 10 | 60-80 |

## The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications. Two linear motion systems are offered:

#### ECO...SP with ball bearing guides

- A ball bearing guide with high load capacity is mounted in a dedicated seat on the inside of the aluminum body.
- The carriage is assembled on two pre-loaded ball bearing blocks.
- The two ball bearing blocks enable the carriage to withstand loading in the four main directions.
- The two blocks have seals on both sides and, if necessary, an additional scraper can be fitted for very dusty conditions.
- The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- Lubrication reservoirs (pockets) installed on the front of the ball bearing blocks supply the appropriate amount of grease, thus promoting a long maintenance interval.

#### The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Maintenance Free (dependent on application)
- Low noise
- Suitable for long stroke

#### ECO...Cl with gothic arch bearing guides inside the body

- Two hardened steel rods (58/60 HRC tolerance h6) are securely inserted inside the aluminum body.
- The carriage is fitted with six bearing assemblies each having a gothic arch groove machined into its outer race to run on the steel rods.
- The six bearings are mounted on steel pins, two of which are eccentric, to allow setting of running clearance and pre-load.
- To keep the running tracks clean and lubricated, four grease impregnated felt seals, complete with grease reservoirs, are fitted on the ends of the carriage.
- The driving belt is supported by the entire length of the profile in order to avoid deflection as well as to protect the linear guide.

#### The linear motion system described above offers:

- Good positioning accuracy
- Low noise
- Maintenance Free (dependent on application)

#### ECO SP

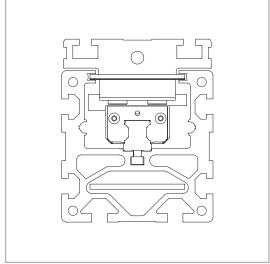



Fig. 2

#### ECO CI

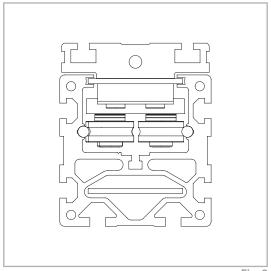
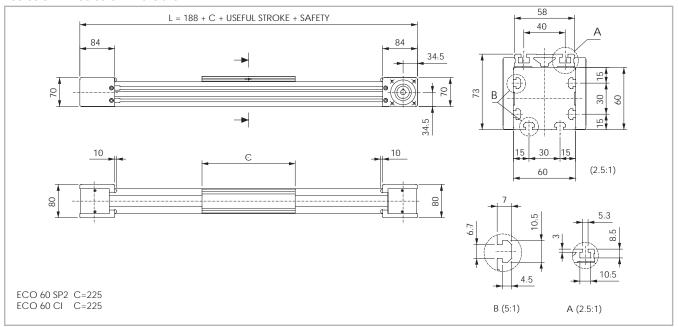




Fig. 3



### ECO 60 SP2 - ECO 60 CI

#### ECO 60 SP2 - ECO 60 CI Dimensions



The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 4

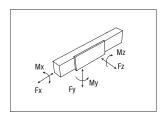
#### Technical data

|                                                                                      | Туре       |           |  |
|--------------------------------------------------------------------------------------|------------|-----------|--|
|                                                                                      | ECO 60 SP2 | ECO 60 CI |  |
| Max. useful stroke length [mm]                                                       | 6025       | 5725      |  |
| Max. positioning repeatability [mm]*1                                                | ± 0.05     | ± 0.05    |  |
| Max. speed [m/s]                                                                     | 4.0        | 1.5       |  |
| Max. acceleration [m/s <sup>2</sup> ]                                                | 50         | 1.5       |  |
| Type of belt                                                                         | 32 AT 5    | 32 AT 5   |  |
| Type of pulley                                                                       | Z 28       | Z 28      |  |
| Pulley pitch diameter [mm]                                                           | 44.56      | 44.56     |  |
| Carriage displacement per pulley turn [mm]                                           | 140        | 140       |  |
| Carriage weight [kg]                                                                 | 0.51       | 0.80      |  |
| Zero travel weight [kg]                                                              | 3.5        | 3.2       |  |
| Weight for 100 mm useful stroke [kg]                                                 | 0.45       | 0.68      |  |
| Starting torque [Nm]                                                                 | 0.24       | 0.32      |  |
| Moment of inertia of pulleys [g mm <sup>2</sup> ]                                    | 163000     | 163000    |  |
| Rail size [mm]                                                                       | 12 mini    | Ø6        |  |
| $^{\star}$ 1) Positioning repeatability is dependant on the type of transmission use | ed         | Tab. 4    |  |

<sup>\*1)</sup> Positioning repeatability is dependant on the type of transmission used

#### Moments of inertia of the aluminum body

| Туре   | l <sub>x</sub><br>[10 <sup>7</sup> mm⁴] | l <sub>y</sub><br>[10 <sup>7</sup> mm⁴] | l <sub>p</sub><br>[10 <sup>7</sup> mm⁴] |
|--------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| ECO 60 | 0.037                                   | 0.054                                   | 0.093                                   |
|        |                                         |                                         | Tab. 5                                  |


#### **Driving belt**

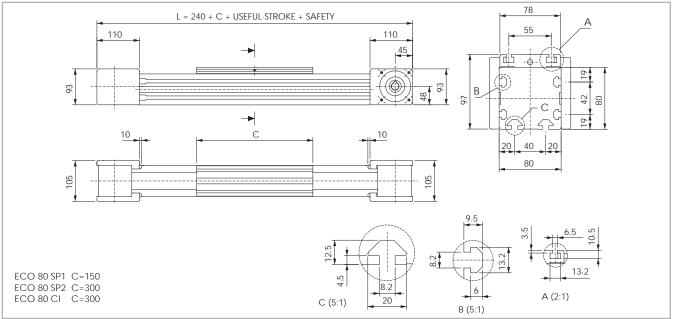
The driving belt is manufactured with friction resistant polyurethane, with steel cord reinforcement for high tensile stress resistance.

| Туре   | Type of | Belt width | Weight |
|--------|---------|------------|--------|
|        | belt    | [mm]       | [kg/m] |
| ECO 60 | 32 AT 5 | 32         | 0.105  |

Tab. 6

Belt length (mm)  $SP2/Cl = 2 \times L - 166$ 




#### ECO 60 SP2 - ECO 60 CI - Load capacity

| Туре       | F<br>[t | :<br>X<br>N] | F<br>[t | :<br>V<br>V] | F <sub>z</sub><br>[N] | M <sub>x</sub><br>[Nm] | M <sub>y</sub><br>[Nm] | M <sub>z</sub><br>[Nm] |
|------------|---------|--------------|---------|--------------|-----------------------|------------------------|------------------------|------------------------|
|            | Stat.   | Dyn.         | Stat.   | Dyn          | Stat.                 | Stat.                  | Stat.                  | Stat.                  |
| ECO 60 SP2 | 1344    | 922          | 7060    | 6350         | 7060                  | 46.2                   | 325                    | 325                    |
| ECO 60 CI  | 1344    | 922          | 1648    | 3072         | 1110                  | 24.4                   | 33                     | 76.2                   |

See verification under static load and lifetime on page SL-2 and SL-3

### ECO 80 SP2 - ECO 80 SP1 - ECO 80 CI

#### ECO 80 SP2 - ECO 80 SP1 - ECO 80 CI Dimensions



The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 5

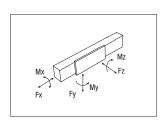
#### Technical data

|                                                                                          | Туре          |               |              |  |
|------------------------------------------------------------------------------------------|---------------|---------------|--------------|--|
|                                                                                          | ECO 80<br>SP2 | ECO 80<br>SP1 | ECO 80<br>Cl |  |
| Max. useful stroke length [mm]                                                           | 5940          | 6090          | 5640         |  |
| Max. positioning repeatability [mm]*1                                                    | ± 0.05        | ± 0.05        | ± 0.05       |  |
| Max. speed [m/s]                                                                         | 5.0           | 5.0           | 1.5          |  |
| Max. acceleration [m/s²]                                                                 | 50            | 50            | 1.5          |  |
| Type of belt                                                                             | 50 AT 5       | 50 AT 5       | 50 AT 5      |  |
| Type of pulley                                                                           | Z 37          | Z 37          | Z 37         |  |
| Pulley pitch diameter [mm]                                                               | 58.89         | 58.89         | 58.89        |  |
| Carriage displacement per pulley turn [mm]                                               | 185           | 185           | 185          |  |
| Carriage weight [kg]                                                                     | 1.6           | 0.9           | 2.1          |  |
| Zero travel weight [kg]                                                                  | 7.7           | 5.9           | 8.2          |  |
| Weight for 100 mm useful stroke [kg]                                                     | 8.0           | 0.8           | 0.65         |  |
| Starting torque [Nm]                                                                     | 0.75          | 0.75          | 0.75         |  |
| Moment of inertia of pulleys [g mm²]                                                     | 706000        | 706000        | 706000       |  |
| Rail size [mm] *1) Positioning repeatability is dependent on the type of transmission us | 15<br>sed     | 15            | Ø6<br>Tab. 8 |  |

Moments of inertia of the aluminum body

| Туре   | l <sub>x</sub>        | l <sub>y</sub>        |                                    |  |
|--------|-----------------------|-----------------------|------------------------------------|--|
|        | [10 <sup>7</sup> mm⁴] | [10 <sup>7</sup> mm⁴] | [10 <sup>7</sup> mm <sup>4</sup> ] |  |
| ECO 80 | 0.117                 | 0.173                 | 0.280                              |  |

Tab. 9


#### **Driving belt**

The driving belt is manufactured with friction resistant polyurethane, with steel cord reinforcement for high tensile stress resistance.

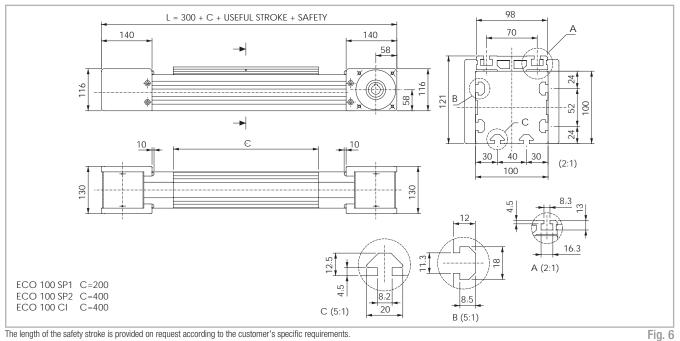
| Туре   | Type of | Belt width | Weight |
|--------|---------|------------|--------|
|        | belt    | [mm]       | [kg/m] |
| ECO 80 | 50 AT 5 | 50         | 0.164  |

Tab. 10

**Belt length (mm) SP2/CI** =  $2 \times L - 240$ **SP1**=  $2 \times L - 90$ 



ECO 80 SP2 - ECO 80 SP1 - ECO 80 CI - Load capacity


| Туре       | F <sub>x</sub> | [N]  | $F_{y}$ | [N]   | F <sub>z</sub> [N] | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] |
|------------|----------------|------|---------|-------|--------------------|---------------------|---------------------|---------------------|
|            | Stat.          | Dyn. | Stat.   | Dyn   | Stat.              | Stat.               | Stat.               | Stat.               |
| ECO 80 SP2 | 2100           | 1440 | 48400   | 22541 | 48400              | 320                 | 3412                | 3412                |
| ECO 80 SP1 | 2100           | 1440 | 24200   | 11271 | 24200              | 160                 | 175                 | 175                 |
| ECO 80 CI  | 2100           | 1770 | 4229    | 8731  | 2849               | 83                  | 129                 | 297                 |

See verification under static load and lifetime on page SL-2 and SL-3



### ECO 100 SP2 - ECO 100 SP1 - ECO 100 CI

#### ECO 100 SP2 - ECO 100 SP1 - ECO 100 CI Dimensions



The length of the safety stroke is provided on request according to the customer's specific requirements.

#### Technical data

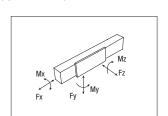
|                                                                          | Туре           |                |              |  |  |
|--------------------------------------------------------------------------|----------------|----------------|--------------|--|--|
|                                                                          | ECO 100<br>SP2 | ECO 100<br>SP1 | ECO100<br>Cl |  |  |
| Max. useful stroke length [mm]                                           | 6630           | 6830           | 5530         |  |  |
| Max. positioning repeatability [mm]*1                                    | ± 0.05         | ± 0.05         | ± 0.05       |  |  |
| Max. speed [m/s]                                                         | 5.0            | 5.0            | 1.5          |  |  |
| Max. acceleration [m/s²]                                                 | 50             | 50             | 1.5          |  |  |
| Type of belt                                                             | 50 AT 10       | 50 AT 10       | 50 AT 10     |  |  |
| Type of pulley                                                           | Z 24           | Z 24           | Z 24         |  |  |
| Pulley pitch diameter [mm]                                               | 76.39          | 76.39          | 76.39        |  |  |
| Carriage displacement per pulley turn [mm]                               | 240            | 240            | 240          |  |  |
| Carriage weight [kg]                                                     | 2.9            | 1.5            | 3.3          |  |  |
| Zero travel weight [kg]                                                  | 16.7           | 12.5           | 17.1         |  |  |
| Weight for 100 mm useful stroke [kg]                                     | 1.3            | 1.3            | 1.1          |  |  |
| Starting torque [Nm]                                                     | 1.90           | 1.35           | 1.35         |  |  |
| Moment of inertia of pulleys [g mm²]                                     | 2070000        | 2070000        | 2070000      |  |  |
| Rail size [mm]                                                           | 20             | 20             | Ø10          |  |  |
| *1) Positioning repeatability is dependant on the type of transmission u | sed            |                | Tab. 12      |  |  |

ECO 100 SP2 - ECO 100 SP1 - ECO 100 CI - Load capacity

Moments of inertia of the aluminum body

| Туре    | <sub>x</sub>                       | l <sub>y</sub>        | lր                    |
|---------|------------------------------------|-----------------------|-----------------------|
|         | [10 <sup>7</sup> mm <sup>4</sup> ] | [10 <sup>7</sup> mm⁴] | [10 <sup>7</sup> mm⁴] |
| ECO 100 | 0.342                              | 0.439                 | 0.781                 |

Tab. 13


#### **Driving belt**

The driving belt is manufactured with friction resistant polyurethane, with steel cord reinforcement for high tensile stress resistance.

| Туре    | Type of  | Belt width | Weight |
|---------|----------|------------|--------|
|         | belt     | [mm]       | [kg/m] |
| ECO 100 | 50 AT 10 | 50         | 0.290  |

Tab. 14

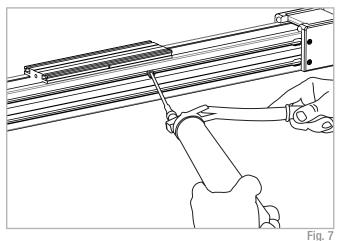
Belt length (mm) SP1 = 
$$2 \times L - 112$$
  
SP2/Cl =  $2 \times L - 312$ 



|                               |                    |                |                       | . ,   |                    |                     |                     |                     |
|-------------------------------|--------------------|----------------|-----------------------|-------|--------------------|---------------------|---------------------|---------------------|
| Туре                          | F <sub>x</sub> [N] |                | $F_{x}[N]$ $F_{y}[N]$ |       | F <sub>z</sub> [N] | M <sub>x</sub> [Nm] | M <sub>y</sub> [Nm] | M <sub>z</sub> [Nm] |
|                               | Stat.              | Dyn.           | Stat.                 | Dyn   | Stat.              | Stat.               | Stat.               | Stat.               |
| ECO 100 SP2                   | 4565               | 2832           | 76800                 | 35399 | 76800              | 722                 | 7603                | 7603                |
| ECO 100 SP1                   | 4565               | 2832           | 38400                 | 17700 | 38400              | 361                 | 334                 | 334                 |
| ECO 100 CI                    | 4565               | 3740           | 9154                  | 20079 | 6167               | 214                 | 310                 | 962                 |
| See verification under static | load and lifetim   | ne on page SL- | 2 and SL-3            |       |                    |                     |                     | Tab. 15             |

### Lubrication

#### ECO linear units with ball bearing guides


ECO linear are equipped with self lubricating linear ball guides.

The ball bearing carriages of the ECO series are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

Special lubrication reservoirs are mounted on the front plates of the linear blocks which continuously provide the necessary amount of grease to the ball raceways under load. These lubrication reservoirs also considerably reduce the frequency of lubrication of the module. This system guarantees

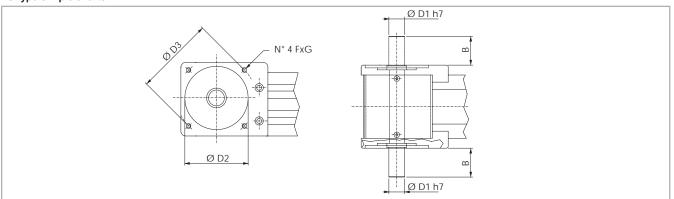
a long interval between maintenances: every 5000 km or 1 year of use, based on the value reached first. If a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

#### EC0



Quantity of lubricant necessary for re-lubrication of each block:

| Туре    | Unit: [cm³] |
|---------|-------------|
|         |             |
| ECO 60  | 0.5         |
| ECO 80  | 0.7         |
| ECO 100 | 1.4         |


- Insert the tip of the grease gun in the specific grease blocks.
- For lubrication of linear units use lithium soap grease NLGI 2.
- For specially stressed applications or difficult environmental conditions, lubrication should be carried out more frequently.
   Refer to Rollon for further advice.





# Simple shafts

#### AS type simple shafts

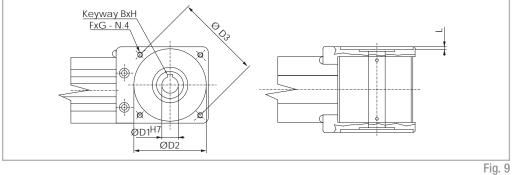


Position of the simple shaft can be to the left or right of the drive head.

Fig. 8

#### Dimensions (mm)

| Applicable<br>to unit | Shaft type | D1 | D2  | D3  | В    | F  | G  | Head code<br>AS left | Head code<br>AS right |
|-----------------------|------------|----|-----|-----|------|----|----|----------------------|-----------------------|
| ECO 60                | AS 12      | 12 | 60  | 75  | 25   | M5 | 12 | 2G                   | 21                    |
| ECO 80                | AS 20      | 20 | 80  | 100 | 36.5 | M6 | 16 | 2G                   | 21                    |
| ECO 100               | AS 25      | 25 | 110 | 130 | 50   | M8 | 20 | 2G                   | 21                    |


Tab. 17

## Hollow shafts

#### Transmission of torque to the drive pulley

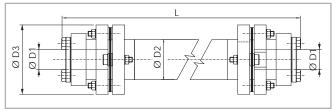
Torque is transmitted to the drive pulley from a hollow shaft and keyway. This system may create backlash in the case of alternating loads and high level acceleration. For further information, contact our offices.

#### Hollow shaft



An (optional) connection flange is required to fit the standard reduction units selected by Rollon.

For further information, contact our offices


| Unit    | Shaft type | D1   | D2  | D3  | L   | Key way<br>BxH | F  | G  | Drive<br>head code |
|---------|------------|------|-----|-----|-----|----------------|----|----|--------------------|
| ECO 60  | AC 12      | 12H7 | 60  | 75  | 3.5 | 4 x 4          | M5 | 12 | 2A                 |
| ECO 80  | AC 19      | 19H7 | 80  | 100 | 3.5 | 6 x 6          | M6 | 16 | 2A                 |
| ECO 100 | AC 25      | 25H7 | 110 | 130 | 4.5 | 8 x 7          | M8 | 20 | 2A                 |



# Linear units in parallel

#### Synchronisation kit for use of ECO linear units in parallel

When movement consisting of two linear units in parallel is essential, a synchronisation kit must be used. The kit contains original Rollon blade type precision joints complete with tapered splines and hollow aluminum drive shafts.



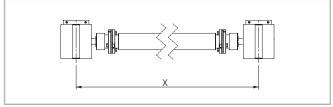


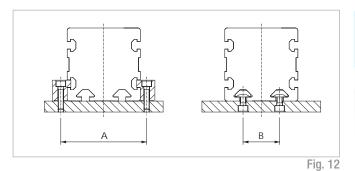

Fig. 10

Fig. 11

| Unit    | Shaft type | D1 | D2 | D3   | Code    | Formula for length calculation |
|---------|------------|----|----|------|---------|--------------------------------|
| ECO 60  | AP 12      | 12 | 25 | 45   | GK12P1A | L= X-88 [mm]                   |
| ECO 80  | AP 20      | 20 | 40 | 69.5 | GK20P1A | L= X-116 [mm]                  |
| ECO 100 | AP 25      | 25 | 70 | 99   | GK25P1A | L= X-165 [mm]                  |

Tab. 19

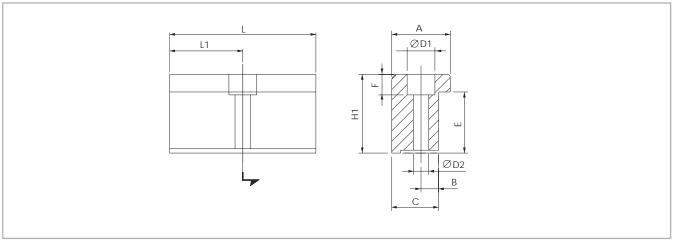
## Accessories


#### Fixing by brackets

The linear motion systems used for the Rollon ECO series linear units enables them to support loads in any direction. They can therefore be installed in any position.

To install the units, we recommend use of the dedicated T-slots in the aluminum extruded bodies as shown below.

#### Moment of inertia [g mm $^2$ ] C1 + C2 · (X-Y)


|       | C1        | C2      | Υ    |            | t [ Kg]<br>· (X-Y) |
|-------|-----------|---------|------|------------|--------------------|
|       | [g mm²]   | [g mm²] | [mm] | C1<br>[Kg] | C2<br>[Kg mm]      |
| GK12P | 61.456    | 69      | 166  | 0.308      | 0.00056            |
| GK20P | 1.014.968 | 464     | 250  | 2.48       | 0.00148            |
| GK25P | 5.525.250 | 4.708   | 356  | 6.24       | 0.0051             |



| Unit    | A<br>(mm) | B<br>(mm) |
|---------|-----------|-----------|
| ECO 60  | 72        | 30        |
| ECO 80  | 94        | 40        |
| ECO 100 | 120       | 40        |
|         |           | T 1 0 4   |

Tab. 21

### Fixing brackets



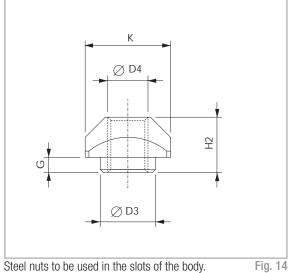

Anodized aluminum block for fixing the linear units through the side slots of the body

Fig. 13

| Unit    | А    | H1   | В  | С  | Е    | F    | D1   | D2   | L   | L1 | Code    |
|---------|------|------|----|----|------|------|------|------|-----|----|---------|
| ECO 60  | 20   | 17.5 | 6  | 16 | 11.5 | 6    | 9.4  | 5.3  | 50  | 25 | 1001490 |
| ECO 80  | 20   | 20.7 | 7  | 16 | 14.7 | 7    | 11   | 6.4  | 50  | 25 | 1001491 |
| ECO 100 | 36.5 | 28.5 | 10 | 31 | 18.5 | 11.5 | 16.5 | 10.5 | 100 | 50 | 1001233 |

Tab. 22

#### T-nuts



Steel nuts to be used in the slots of the body.

Dimensions (mm)

| Unit    |   | D3  | D4 | G   | H2  | K  | Code    |
|---------|---|-----|----|-----|-----|----|---------|
|         |   |     |    |     |     |    |         |
| ECO 60  | S | 6.7 | M5 | 2.3 | 6.5 | 10 | 1000627 |
| ECO 60  | С | -   | M5 | -   | 5   | 10 | 1000620 |
| ECO 80  | S | 8   | M6 | 3.3 | 8.3 | 13 | 1000043 |
| ECO 80  | С | -   | M6 | -   | 5.8 | 13 | 1000910 |
| ECO 80  | L | -   | M6 | -   | 6.5 | 17 | 1000911 |
| ECO 100 | S | 11  | M8 | 3   | 11  | 17 | 1000932 |
| ECO 100 | С | -   | M8 | -   | 8   | 16 | 1000942 |
| ECO 100 | L | -   | M8 | -   | 6.5 | 17 | 1000943 |

 $\mathbf{S} = \mathsf{Side} - \mathbf{C} = \mathsf{Carriage} - \mathbf{L} = \mathsf{Lower}$ 

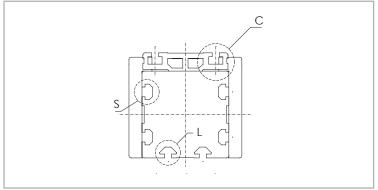



Fig. 15

#### **Proximity**

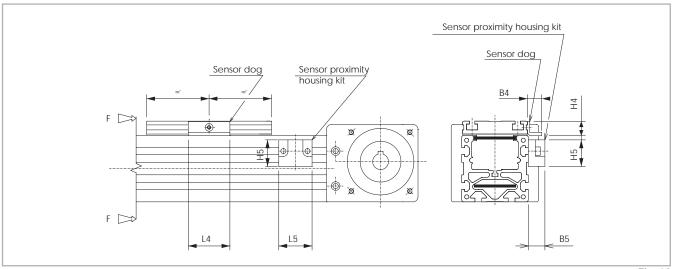


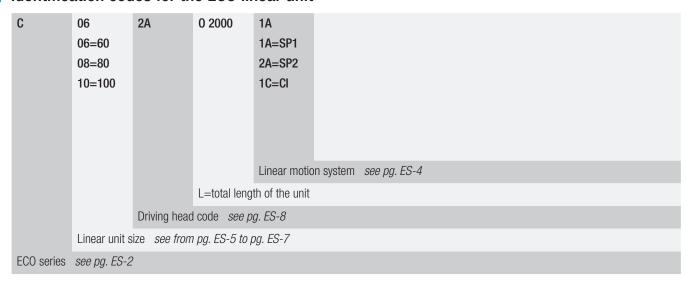

Fig. 16

#### Sensor proximity housing kit

Anodized aluminum block, red colour, equipped with T-nuts for fixing into the body slots.

#### Sensor dog

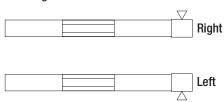
L-shaped bracket in zinc-plated iron, mounted on the carriage and used for the proximity switch operation.


| Unit    | В4   | B5 | L4 | L5 | H4 | Н5   | For proximity | Sensor dog<br>Code | Sensor proximity housing kit code |
|---------|------|----|----|----|----|------|---------------|--------------------|-----------------------------------|
| ECO 60  | 9.5  | 14 | 25 | 29 | 12 | 22.5 | Ø 8           | G000268            | G000213                           |
| ECO 80  | 17.2 | 20 | 50 | 40 | 17 | 32   | Ø 12          | G000267            | G000209                           |
| ECO 100 | 17.2 | 20 | 50 | 40 | 17 | 32   | Ø 12          | G000267            | G000210                           |

Tab. 24






## Identification codes for the ECO linear unit



In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

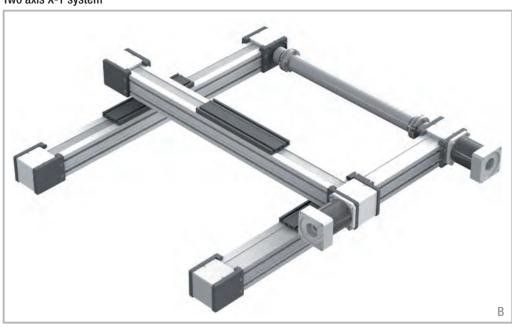


#### Left / right orientation





# Multiaxis systems / ~


Previously, customers wishing to build multiaxis units have had to design, draw and manufacture all the elements necessary to assemble two or more axis. Rollon now offers a set of fittings including brackets and cross plates to enable multiaxis units to be built. In addition to standard elements, Rollon also provides plates for special applications.

#### ECO axis system



A - Linear units: X axis 1 ECO 80

#### Two axis X-Y system



B - Linear units: X axis: 2 ECO 80 - Y axis 1 ECO 80

Connection kit: 2 Kits of fixing brackets for the ECO 80 unit (Y axis) on the carriages of the ECO 80 units (X axis).